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A computational protocol for the calculation of local �Holstein� and nonlocal �Peierls� carrier-phonon cou-
pling in molecular organic semiconductors is presented and applied to orthorhombic rubrene �5,6,11,12-
tetraphenyltetracene�. In the phonon description, the rigid molecule approximation is removed, allowing mix-
ing of low-frequency intramolecular modes with intermolecular �lattice� phonons. Notwithstanding, a rather
clear distinction remains between the low-frequency phonons, which essentially modulate the transfer integral
from a molecule to another �Peierls coupling�, and the high-frequency, fully intramolecular phonons, which
modulate the on-site energy �Holstein coupling�. The implications for the current models of mobility are
shortly discussed.
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I. INTRODUCTION

In recent years the improvement of chemical purification
and crystal growth techniques has led to the production of
molecular organic semiconductors with very low structural
disorder and intrinsic mobilities on the order of
10–100 cm2 /V s.1 These progresses have also spurred in-
tense theoretical research to understand carrier transport in
these materials, as both conventional band theory and the
Holstein polaron hopping mechanism appear to be inad-
equate to explain the observed mobilities.1,2 Several authors
have recently pointed out that many features of the organics’
mobilities, such as, for instance, the anisotropic temperature
dependence, could be accounted for by introducing, in addi-
tion to the Holstein coupling, the nonlocal, Peierls-type
carrier-phonon coupling.3–8 The idea can be found also in
previous literature9 but at the time the theories could not be
properly tested due to the lack of reliable estimates of the
strength of Peierls coupling. Today, more advanced compu-
tational methods are available, even though computations at
the level of density-functional theory �DFT� are limited to
relatively simple molecular crystals such as
naphthalene.3,10,11

Our group has decided to attack the problem through an
experimentally bound semiempirical approach. By this
method we can easily calculate the crystal structure and the
low-frequency, intermolecular �or lattice� phonons of mo-
lecular crystals. Comparison with the experimental Raman
spectra validates the computation and, as an additional bo-
nus, allows one to discriminate between different polymor-
phs of the molecular semiconductor under scrutiny.12 A first
application of the method to calculate the strength of Peierls
coupling in pentacene has been published some years ago.13

Now we apply and perfect the method in calculating and
comparing the Peierls and Holstein coupling of a more com-
plex organic semiconductor, rubrene �5,6,11,12-
tetraphenyltetracene�.

The choice of rubrene has been obviously driven by its
importance in the field since it associates one of the highest
carrier mobilities among organic semiconductors to interest-

ing optoelectronic properties.14,15 On the other hand, the ru-
brene crystal is also a valuable test system for our computa-
tional method. The Holstein coupling strength of the isolated
molecule has been calculated by DFT methods16,17 with the
intriguing result of a strong coupling by very low-frequency
�below 100 cm−1� vibrations. Moreover, Troisi5 has been
able to predict rubrene absolute mobility and its temperature
dependence �between 200 and 350 K� by looking at the ther-
mal fluctuations of the transfer integrals. In the model, these
fluctuations are connected to Peierls coupling, whose param-
eters are obtained combining classical molecular dynamics
with semiempirical electronic structure calculations.5 It will
be therefore instructive to compare our results with the
above, examining how the low-frequency Holstein coupling
is modified when the molecule is embedded in the crystal,
and at the same time to obtain a more direct and precise
analysis of the phonons involved in the Peierls coupling. Our
results can also benefit from the numerous experimental in-
vestigations on rubrene phonons,18–20 performed also with
reference to the mobility mechanism.21–23

II. THEORETICAL METHODOLOGY

In dealing with the complex phonon spectra of molecular
crystals, one common approximation is to separate the in-
tramolecular vibrations from the intermolecular, or lattice,
phonons. This is the rigid molecule approximation �RMA�,
in which the lattice phonons correspond to translations and
rotations of the rigid molecules. Within the RMA, and in the
framework of a molecular orbital �MO� description of the
electrons, it is natural to associate the Peierls coupling, i.e.,
the modulation of intermolecular hopping integrals to lattice
phonons. In the same spirit, intramolecular vibrations are
expected to modulate only the on-site energies, giving rise to
local, or Holstein, carrier-phonon coupling.

However, the isolated rubrene molecule possesses several
very low-frequency vibrations16,18 that inevitably will mix
with lattice phonons when the molecules are embedded in
the crystal.19 In addition, computations at the DFT level for
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the isolated rubrene molecule predict that about one third of
the Holstein coupling strength is associated with low-
frequency vibrations.16 Finally, analogous calculations on
the naphthalene crystal have produced the rather unexpected
result of a strong Peierls coupling by high-frequency
��1600 cm−1� intramolecular vibrations.11 Therefore, we
have decided to investigate the consequences of relaxing the
RMA on the Peierls coupling, and the relative importance of
Peierls and Holstein carrier-phonon coupling, by calculating
both contributions for all the optical phonons of the rubrene
crystal. In the following we shall illustrate the methodology
employed to calculate phonon frequencies and eigenvectors,
the electronic structure, and the Holstein and Peierls carrier-
phonon couplings.

A. Phonon structure

Following a well-assessed treatment,24 we start by assum-
ing the RMA, and calculate separately the intramolecular and
intermolecular vibrations. Intramolecular vibrations are cal-
culated at the DFT level, with the GAUSSIAN03 package,25

using the B3LYP exchange-correlation functional combined
with the 6-31G�d� basis set. As starting molecular geometry
we choose that of the molecule within the crystal,26 adding
the constraint of C2h molecular symmetry. The full procedure
followed to calculate harmonic frequencies and eigenvectors
is described in detail in Ref. 19.

Intermolecular phonon dynamics is calculated by the
quasiharmonic lattice-dynamics method.27,28 In this method
the vibrational contribution to the Gibbs energy G�p ,T� of
the crystal at pressure p and temperature T is approximated
by the free energy of the lattice phonons calculated in the
harmonic approximation at the average lattice structure:

G�p,T� = �inter + pV + �
km

��km

2

+ kBT�
km

ln�1 − exp�−
��km

kBT
�� . �1�

Here, �inter is the intermolecular potential energy of the crys-
tal, pV is the pressure-volume term, �km��km /2 is the zero-
point energy, and the last term is the entropic contribution.
The sums are extended to all phonon modes m of wave vec-
tor k and frequency �km. �inter is assumed to be described by
an atom-atom Buckingham model plus a Coulombic term,

�inter =
1

2�
��
�A�� exp�− B��r��� −

C��

r��
6 +

q�q�

r��
� , �2�

where the sum is extended to all distances r�� between pairs
� ,� of atoms in different molecules considered as rigid bod-
ies, the atoms being fixed at their equilibrium position. The
A�� ,B�� ,C�� Buckingham parameters involving C and H
atoms are from Ref. 29. The charges q� ,q� in the Coulomb
term are the electrostatic-potential-derived atomic charges25

fitted to the electrostatic potential obtained in the above DFT
calculations of the isolated molecule. Given an initial lattice
structure, one computes �inter and its second derivatives with
respect to the displacements of the molecular coordinates.

The second derivatives form the dynamical matrix, which is
numerically diagonalized to obtain the phonon frequencies
�ki and the corresponding eigenvectors. The structure as a
function of p and T is then determined self-consistently by
minimizing G�p ,T� with respect to lattice parameters, mo-
lecular positions, and orientations.

At this point we relax the RMA, by introducing the cou-
pling between intramolecular and intermolecular vibrations
through the so-called exciton model.30 The total potential �
is actually made of intermolecular and intramolecular contri-
butions, �inter and �intra. In the exciton model, the diagonal
derivatives of �intra potential are taken to coincide with those
of an isolated molecule: �2�intra /�Qri

2 =�ri
2 . Here �ri is the

frequency of the ith normal mode of the rth molecule. All
off-diagonal derivatives are zero, which means no coupling
among different normal modes, and no coupling between
normal modes and rigid rototranslations. These assumptions
are correct by definition for the intramolecular potential at
the harmonic level.

The coupling between the molecular and intermolecular
coordinates is then introduced perturbatively through �inter.
�inter is described by atom-atom and charge-charge interac-
tions 	Eq. �2�
, which are both functions only of the inter-
atomic distance. Since the distance depends on the Cartesian
coordinates of the atoms, Xr�, the derivatives of �inter can be
directly computed in terms of the coordinates Xr�, and then
converted to molecular coordinates Qri,

�2�inter

�Qri � Qsj
= �

��

�2�inter

�Xr� � Xs�

�Xr�

�Qri

�Xs�

�Qsj
. �3�

Here � and � label the Cartesian coordinates of the atoms in
molecules r and s, respectively, and the matrix �Xr� /�Qri
describes the Cartesian atomic displacements which corre-
spond to each molecular coordinate Qri. The displacements
corresponding to rigid translations and rotations of the mol-
ecules can be derived by simple geometric arguments. The
displacements associated to the intramolecular degrees of
freedom are the Cartesian eigenvectors of the normal modes
of the isolated molecule. The displacements, together with
the intermolecular potential model, determine the coupling
between intramolecular and intermolecular modes. We re-
mark that the intramolecular degrees of freedom are taken
into account only as far as their effects on the vibrational
contribution to the free energy are concerned. No attempt to
decrease the potential energy by deforming the molecules is
made.

B. Electronic structure

Holstein and Peierls coupling are connected to the modu-
lation by the phonons of on-site energies �r and the transfer
integrals trs, respectively, which within the tight binding, MO
approximation are given by

�r = ��r�H��r
 , �4�

trs = ��r�H��s
 , �5�

where H is the one-particle electronic Hamiltonian, and �r
and �s are the highest-occupied MO �HOMO� or lowest-
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unoccupied MO �LUMO�, for hole or electron transport, re-
spectively, of the molecules at sites r and s. Calculating the
modulation of these quantities by all the phonons in the ru-
brene crystal is exceedingly onerous, so we have chosen a
semiempirical approach based on the INDO �intermediate
neglect of differential overlap� Hamiltonian with the Zerner
spectroscopic parametrization �INDO/S�.31,32

While the HOMO, LUMO energies �r are directly given
by the INDO/S method for the rubrene molecule, the calcu-
lation of the transfer integral between two molecules �a
dimer� requires some comment. One common approach is
the so-called “energy splitting in the dimer” �ESD� model.
The ESD model considers the energy splitting of the two
HOMO �or LUMO� orbitals in the dimer with respect to the
isolated molecule. The energy separation between the
HOMO-1 and HOMO �LUMO and LUMO+1� of the dimer
is then taken to be twice the transfer integrals between the
two molecules,

�� = 2�trs� . �6�

This approach cannot determine the sign of t, which instead
is important when considering the t’s of different dimers
within the crystal. Moreover, the approach is valid only for
exactly equivalent molecules, which have to remain equiva-
lent also during a vibration. The latter condition is clearly
inapplicable for nontotally symmetric modes.5

We therefore consider directly the interacting matrix ele-
ment between the frontier orbitals of the two molecules r and
s within the dimer. We first perform the calculation for the
two isolated molecules i=r ,s,

fi�i
0 = �i�i

0, �7�

where fi is the Fock operator for each molecule in the dimer
and �i

0 the corresponding HOMO or LUMO with energy �i.
Next we repeat the calculation for the full dimer,

frs�rs = �rs�rs. �8�

The transfer integral is then given by

trs = ��r
0�frs��s

0
 . �9�

In the INDO/S method �r and �s are expressed as linear
combinations of atomic orbitals �AOs� 	
 and 	�,

�r
0 = �




cr
	
 �s
0 = �

�

cs�	�. �10�

Equation �9� can then be rewritten as

trs = �



�
�

cr
cs��	
�frs�	�
 , �11�

where the �	
�frs�	�
 is the Fock matrix element on the dimer
AO basis. The above equation is easily implemented in the
INDO/S program.32

C. Carrier-phonon coupling

The strength of carrier-phonon coupling can be expressed
in a variety of ways and computed by different methods.2

Here we shall follow the nomenclature and procedure

adopted by our laboratory since its studies on electron-
phonon coupling in organic charge-transfer crystals.24,33

We define the linear Holstein and Peierls coupling con-
stants as follows:

gH�r;km� = � ��r

�qkm
� =� �

2�km
� ��r

�Qkm
� , �12�

gP�rs;km� = � �trs

�qkm
� =� �

2�km
� �trs

�Qkm
� , �13�

where, as defined above, �r is the HOMO or LUMO energy
of the molecule at site r and trs is the transfer integral be-
tween the HOMOs or the LUMOs of two molecules r and s.
Moreover, qkm and Qkm are, respectively, the dimensionless
and dimensional �spectroscopic� normal coordinate of mode
m of wave vector k and frequency �km. With this definition,
both g’s are expressed in energy units, at variance with other
current definitions.2

In the following we shall make the approximation of con-
sidering the only optical �k=0� phonons with the reasonable
assumption that the coupling constants do not vary consider-
ably with k. Consistently with this approximation, we disre-
gard the coupling to acoustic phonons, although the coupling
at the zone edges may be of the same order of magnitude as
that of the optical phonons.34 Therefore we shall henceforth
drop the index k. Since we are dealing with a set of equal
molecules, we can also drop the index r. We shall also report
only the results for the HOMOs �valence band�, the only
ones relevant to the experimental hole mobility of rubrene.

The strength of the Holstein and Peierls coupling is ex-
pressed by the small polaron binding energy, �sp, and by the
lattice distortion energy, �d, respectively, defined as24,33

�sp = �
m

�sp�m� = �
m

gH
2 �m�/�m, �14�

�d = �
mt

�d�t;m� = �
mt

gP
2�t�/�m, �15�

where the summations run over all the optical modes m of
the crystal �both intramolecular and intermolecular� and over
all the nonequivalent transfer integrals t. If one assumes that
the normal modes of the neutral and ionized molecule are
equal, a reasonable assumption when considering all the
modes together, the small polaron binding energy �sp is one
half of 
, the reorganization energy.2

III. RESULTS

The most commonly encountered rubrene phase is ortho-
rhombic, space group Cmca �D2h

18� with four molecules per
unit cell.19,26 The conventional cell is nonprimitive �C face
centered� with two molecules exchanged by a rototranslation
and two more molecules obtained by a nonprimitive transla-
tion. The primitive unit cell contains two molecules, which
have C2h symmetry and lie on sites with symmetry 2 /m. The
uncommonly high symmetry of the rubrene crystal simplifies
the problem, as many quantities are zero by symmetry or
have equal absolute values.
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Figure 1 shows the crystal structure of orthorhombic ru-
brene. A and B label the two independent molecules within
the primitive unit cell and t1 to t8 indicate the nearest-
neighbor transfer integrals. The transfer integrals t1 to t4 are
all equal by symmetry. The same applies to t5 and t6 inte-
grals, and to t7 and t8. INDO/S values for the HOMO t’s are:
t1–4=−0.006 eV, t5,6=0.125 eV, and t7,8=0.000 eV. The
value of t5,6 is in agreement with previous estimates,5,16,17

whereas that of t1–4 is somewhat lower.5 In any case, the
electronic structure of orthorhombic rubrene is anisotropic
with the hopping probability mainly directed along the b
crystal axis.

We first analyze the Holstein coupling gH. For the isolated
molecule, only totally symmetric molecular modes �ag� can
have gH different from zero. The top of Fig. 2 reports the
small polaron binding energies, �sp�m�, for each mode in the
isolated molecule, as calculated for the rubrene HOMOs by

the INDO/S method. The �sp�m�’s are somewhat higher than
those calculated by DFT methods,16,17 but the relative values
show the same trend, the highest values being relevant to the
modes at 1594, 1349, 1002, and 21 cm−1. The INDO/S total
small polaron binding energy is 112 meV, to be compared
with the DFT values of 80 meV and 75 meV in Refs. 16 and
17, respectively.

When the molecule is embedded in the crystal, the ag
modes of the two molecules in the primitive unit cell couple
in phase and out of phase, yielding phonons of Ag and B3g
crystalline symmetry, respectively.19 In addition, we have the
lattice phonons, which mix with the low-frequency molecu-
lar phonons �Table I�. The single-mode small polaron bind-
ing energies are reported in the bottom panel of Fig. 2, red
and green lines. The comparison between the top and bottom
panels of the figure immediately shows that the Holstein cou-
pling strength of the lowest frequency ag molecular mode, at
21 cm−1, is essentially washed out when the molecule is
embedded in the crystal. Due to the mixing with the lattice
modes, the coupling strength of the mode is indeed distrib-
uted over several phonons. In addition, the packing inside the
crystal makes the molecule more rigid �higher frequencies of
the modes�, again contributing to the reduction in the cou-
pling strength. The calculated total small polaron binding
energy of the rubrene molecule in the crystal is 99 meV,
slightly smaller than that for the isolated molecule. The nu-
merical values of the coupling constants are reported in the
fifth column of Table I for the low-frequency modes, and in
the second and fifth columns of Table II, for the high-
frequency, fully intramolecular modes. Clearly, the coupling
of the high-frequency modes dominates, the strongest cou-
pling being associated to the 1594, 1349, and 1002 cm−1

phonons �Fig. 3�, which account for about 60% of the total
coupling strength.

We now turn our attention to the Peierls coupling. A
simple symmetry analysis indicates that phonons belonging

TABLE I. Holstein and Peierls coupling constants of low-
frequency �10–250 cm−1� phonons in the orthorhombic rubrene
crystal. Frequencies ��̄� in reciprocal centimeter and coupling
constants in millielectron volt. The observed frequencies are from
Ref. 19.

�̄ calc. % intra �̄ obs. gH gP

Ag 37.4 46.8 35.5 −0.9 3.4

66.6 78.5 75.3 1.6 −6.6

106.3 81.1 104.8 0 −4.4

125.1 94.5 118.6 1.4 −4.7

142.6 99.2 139.6 0 0

217.7 100.0 220.2 −5.7 1.1

B3g 43.1 61.2 35.5 1.3 −2.6

86.7 48.4 75.3 −0.6 −9.3

90.6 95.7 87.4 0.1 0.4

123.9 96.1 104.0 1.7 −1.1

138.2 98.7 139.2 3.3 −1.3

216.8 100.0 −5.8 1.0

FIG. 1. �Color online� Crystal structure of orthorhombic ru-
brene. The two independent molecules �A and B� within the primi-
tive cell and the eight nearest-neighbor transfer integrals are
evidenced.

FIG. 2. �Color online� Top panel: single-mode small polaron
binding energy in isolated rubrene molecule. Bottom panel: single-
mode small polaron binding energy �red and green lines� and lattice
distortion energy �blue lines� of rubrene crystal. Notice the different
energy scale in the two panels.

GIRLANDO et al. PHYSICAL REVIEW B 82, 035208 �2010�

035208-4



to the B1g, B2g, Au, and B3u crystal symmetry species cannot
modulate the transfer integrals. The B1u and B2u phonons
modulate the t1–4 integrals, but the coupling in negligibly
small �less than 1 meV�, since the integrals themselves are
small. The Ag and B3g phonons can couple both to the t1–4
and to the t5,6 transfer integrals but only the latter are appre-
ciably different from zero. The sign of gP�5; l� and gP�6; l� is
the same for the Ag phonons and opposite for the B3g ones.
The values of the Peierls coupling constants relevant to t5 are
reported in the sixth column of Table I and in the third and
sixth columns of Table II. The lattice distortion energy of the
individual phonons is compared with the corresponding
small polaron binding energy in the bottom panel of Fig. 2.

From Tables I and II and Fig. 2 it is immediately evident
that only the low-frequency phonons exhibiting some com-
ponent of intermolecular displacement are able to apprecia-
bly modulate the transfer integrals. The most strongly
coupled phonons are the second lowest frequency of each
symmetry species, namely, the Ag mode at 66.6 cm−1 and
the B3g mode at 86.7 cm−1. Among the fully intramolecular

vibrations, only the modes at 450.2, 631.2, 672.4, 781.6, and
1693.8 cm−1 show weak coupling to the transfer integrals,
but given their high frequency they yield negligible contri-
bution to �d. The total lattice distortion energy is calculated
to be about 20 meV.

Despite the mixing between intramolecular and intermo-
lecular modes, particularly strong in rubrene due to the pres-
ence of the heavy phenyl groups, a rather sharp separation
persists between Holstein and Peierls coupled phonons. The
former are indeed high-frequency, fully intramolecular
modes, and the latter are low-frequency modes, with clear
intermolecular character �Fig. 2, bottom�. Very few phonons
exhibit both types of coupling �Tables I and II�, and in gen-
eral one of the coupling dominates on the other.

Figure 3 pictorially reports the eigenvectors of the three
most strongly coupled Holstein modes. All three imply CC
stretching vibrations of the tetracene skeleton, as it might
have been expected since the HOMO is mostly localized on
the tetracene rings. Only the 1002 cm−1 mode presents some
contribution of the ring breathing of the phenyl groups but
the modulation of the HOMO energy is in any case bound to
the vibrations of the tetracene.

The eigenvectors of the four most strongly coupled
Peierls modes are reported in Fig. 4. The Ag and B3g modes
at 67 and 87 cm−1 are rather similar, both implying the rela-
tive displacements of the tetracene skeletons of the mol-
ecules aligned along the b axis. On the other hand, the Ag
modes at 37 cm−1 and at 106, and the pair of Ag and B3g
phonons around 120 cm−1 �the latter not reported in the fig-
ure� mostly involve the lateral phenyl group. A more detailed
analysis of the eigenvectors shows that the lowest frequency
ag mode of the isolated molecule, calculated at 20 cm−1 �top
of Fig. 2�, in the crystal redistributes mainly over four
phonons, Ag at 37.4 and 66.6 cm−1, and B3g at 43.1 and
86.7 cm−1.

IV. DISCUSSION

We have obtained a detailed description of the phonons in
crystalline rubrene, and of their local and nonlocal coupling
with the holes in the valence band. Of course, we cannot give
strict confidence to the obtained absolute values of the cou-
pling constants but we can certainly assess the relative mag-

TABLE II. Ag and B3g Holstein and Peierls coupling constants
of pure intramolecular modes in the orthorhombic rubrene crystal.
Frequencies ��̄� in reciprocal centimeter and coupling constants in
millielectron volt. Only modes with gH
5.0 meV or with
gP
1.0 meV are reported. Ag and B3g modes have the same fre-
quency and coupling constants, so only a single value is shown.

�̄ calc. gH gP �̄ calc. gH gP

450.2 0 2.6 1205.3 −15.1 0

624.5 8.22 0 1233.4 5.0 0

631.2 −10.8 1.3 1321.4 −17.5 0

659.1 −7.2 0 1348.6 49.9 0

672.4 0 1.7 1354.5 20.1 0

781.6 0 1.4 1363.6 −17.8 0

909.5 7.0 0 1487.0 5.2 0

924.1 −5.3 0 1536.3 22.4 0

989.6 6.5 0 1546.3 18.6 0

1002.3 24.6 0 1593.8 −45.6 1.6

1018.5 6.8 0 1658.1 5.6 0

FIG. 3. The three most strongly coupled Holstein phonons.

PEIERLS AND HOLSTEIN CARRIER-PHONON COUPLING… PHYSICAL REVIEW B 82, 035208 �2010�

035208-5



nitude of Holstein and Peierls coupling strengths. Indeed,
having adopted a unified method of calculation, and having
also taken into account the change in the phonon description
when the rubrene molecule is embedded into the crystal, we
can confidently state that the overall coupling strength of the
Peierls coupling ��d� is about one fifth of the strength of the
Holstein coupling ��sp�.

We now address the connection of the present results with
the issue of rubrene mobility. As mentioned in Sec. I, the

high-temperature �200–350 K� mobility of rubrene has been
rather accurately predicted by Troisi in terms of the time-
dependent fluctuations of the transfer integrals, obtained by
classical molecular dynamics and INDO/S.5 The approach is
in many aspect complementary to ours, so it is instructive to
compare the corresponding results.

The top of Fig. 5 reports the Fourier transform of the
autocorrelation function of the time-dependent transfer inte-
grals along the rubrene b axis, adapted from Ref. 5. The
peaks correspond to frequencies of the phonons that most
strongly modulate the transfer integrals, namely, that have
the strongest Peierls coupling constants. In the middle panel
we plot what can be considered as the analogous function in
the framework of our method, namely, the squares of the
Peierls coupling constants �Table I� multiplied by the rel-
evant phonon density of states �PDOS�. It is seen that our
function is more strongly peaked than that obtained by
Troisi5 due to the relatively small dispersion of the implied
phonons. The latter point justifies our assumption of disre-
garding the wave-vector dependence of the coupling con-
stants �cf. Sec. II C�. In addition, the Troisi’s function is
peaked around 50 cm−1, whereas in our case the majors
peaks occur at higher frequencies, in good agreement with
the experimental Ag and B3g Raman frequencies, reported in
the lowest panel of Fig. 5 �adapted from Ref. 19�. On the
other hand, the mobility does not depend on the details of the
carrier phonons coupling. As a matter of fact, in the Troisi’s
model the mobility is computed on the basis of only one
effective phonon per type �Holstein and Peierls� with cou-
pling strength taken as twice �sp and �d. The effective
phonons frequency is roughly set equal to the frequency of
the most strongly coupled mode.5

Our calculated total Holstein and Peierls coupling
strengths �99 meV and 20 meV, respectively� have the same
ratio as the reorganization energies used in Ref. 5. For the
frequency of the effective phonons, we use the weighted av-
erage of the coupled frequencies,35

FIG. 4. �Color online� Four examples of strongly coupled Peierls phonons.

FIG. 5. Top panel: frequency analysis of the nuclear motions
that modulate more strongly the transfer integral along the b axis
�adapted from Ref. 5�. Middle panel: Peierls coupling constant mul-
tiplied by the PDOS. Bottom panel: Raman spectrum reporting the
Ag and B3g phonons �adapted from Fig. 1 of Ref. 19�.
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�eff =

�
j

� j� j

�
j

� j

, �16�

where � j are the frequencies of either the Holstein or Peierls
coupled modes with small polaron binding energy or lattice
distortion energy � j. We obtain an effective frequency of
1277 cm−1 and 77 cm−1 for the Holstein and Peierls coupled
modes, respectively, to be compared with the 1400 and
50 cm−1 values adopted in Ref. 5. Then two different ap-
proaches give comparable parameters in terms of which the
rubrene mobility around room temperature is satisfactorily
reproduced. This finding reinforces the idea that the model of
transfer integral fluctuations is able to account for the mobil-
ity mechanism in organic semiconductors.

One distinctive feature of rubrene mobility is its fast drop
below about 170 K.15 This sharp decrease has been attributed
to carrier trapping15 or to the enhancement of the carriers
effective mass.22 More recently, it has been noted that a sig-
nificant decrease in width of several low-frequency Raman
bands occur between 200 and 150 K.20 This finding has
brought the authors to propose a model by which the sharp
mobility decrease is associated to a decreased conforma-
tional disorder in the lateral phenyl groups. The idea is inter-
esting, but we should remark that not all the low-frequency
modes imply oscillations of the phenyl groups �see Fig. 4�,
and that in general the bandwidth decrease in low-frequency
phonons is also connected with the decrease in excited states
population with temperature. A more detailed study of the
Raman bandwidth decrease, possibly with polarized light on
single crystals,19 might help in clarifying the matter.

One last point we wish to address is the appearance of an
infrared �IR� band around 500 cm−1 on operating
devices21,22 or on photoexcitation,23 namely, in the presence
of charge carriers. It is tempting to attribute this band to a
phenomenon analogous to that observed in polyacetylene or
other conducting polymers. In these systems, in fact, doping
or photoexcitation induces strong IR absorptions in corre-
spondence with Peierls coupled modes, due to symmetry
breaking induced by the charges.36,37 As we have seen be-
fore, rubrene electronic structures has a quasi-one-
dimensional character along b, although the corresponding
bandwidth ��0.5 eV� is about 20 times smaller than the
bandwidth of, e.g., polyacetylene ��10 eV�. Table II shows
that in the frequency range 450–750 cm−1 some intramo-
lecular modes display Peierls coupling. The coupling is
rather weak, however. The connection of the rubrene
�500 cm−1 IR band with the phenomena observed in con-
ducting polymers indeed requires confirmation by further IR
investigations, notably in the spectral region where most of
the Peierls coupled modes occur, below 150 cm−1 �Table I�.

V. CONCLUSIONS

In this paper we have proposed a computational protocol
for the calculation of local �Holstein� and nonlocal �Peierls�
carrier-phonon coupling in molecular organic semiconduc-
tors. The two types of coupling are computed by the same
method, allowing a reliable assessment of the relative cou-
pling strength. The approach is semiempirical so that it can
be easily applied to complex molecular crystals such as ru-
brene. The results of the calculations are validated by the
comparison with experiment �Raman spectra� and by partial
results obtained by other computational approaches. One key
ingredient of our method is to allow interaction and mixing
of the intermolecular and intramolecular phonons. The mix-
ing is fundamental in accounting for the phonon related
properties of the crystal at hand.34

Due to the presence of heavy lateral phenyl group, iso-
lated �gas phase� rubrene has several low-frequencies vibra-
tions, some of which show strong Holstein coupling to the
charge carrier.16,17 However, we have put in evidence that
embedding the rubrene molecule in the crystal strongly at-
tenuate the Holstein coupling of low-frequency phonons. Ac-
tually, the overall Holstein coupling strength is slightly de-
creased in the crystal. Calculation of both Holstein and
Peierls coupling constants for all the phonons in the rubrene
crystal shows that despite the mixing between intermolecular
and intramolecular phonons, a rather clear separation re-
mains between the low-frequency phonons, which mostly
modulate the transfer integral, and the high-frequency
phonons modulating the on-site energies �Fig. 2�.

There are of course several approximations in our calcu-
lations, for instance, we calculate the coupling constants only
for the optical phonons at the zone center. In addition, we
disregard the anharmonicity, which in the case of low-
frequency phonons might have important effects on the
physical properties above 100–150 K. On the other hand,
macroscopic properties such as the mobility do not depend
strongly from the details of the carrier-phonon coupling. In-
deed, models aimed at reproducing the temperature depen-
dence of the mobility of organic semiconductors use single
effective phonons as model parameters.5,8 The effective pho-
non frequency and coupling strength we have calculated for
rubrene agree nicely with those independently adopted by
Troisi in accounting for the room-temperature rubrene
mobility.5 This finding gives support to the proposed mobil-
ity mechanism. However, we believe that we can start trust-
ing a model once it is able to explain the differences in the
mobility of different systems. The computational protocol
presented in this paper can easily provide parameters for the
local and nonlocal carrier-phonon coupling in other organic
semiconductors, then validating models for the mobility
mechanism.
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